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• PM2.5 source contributions are
comparatively analyzed using RSM and
PSAT.

• Both RSM and PSAT can reasonably
assess the primary PM2.5 emission
contributions.

• PSAT has the limitation of quantifying
the nonlinear contributions to second-
ary PM2.5.

• RSM can well capture the PM2.5

disbenefits by local NOx emission
reductions.

• Dust and mobile sources are two major
contribution sectors to PM2.5 in PRD,
China.
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Identifying the emission source contributions to PM2.5 is essential for a sound PM2.5 pollution control
policy. In this study, we conduct a comparative analysis of PM2.5 source contributions over the Pearl
River Delta (PRD) region of China using two advanced source contribution modeling techniques: Re-
sponse Surface Model (RSM) and Particulate Source Apportionment Technology (PSAT). Our compara-
tive analyses show that RSM and PSAT can both reasonably predict the contribution of primary PM2.5

emission sources to PM2.5 formation due to its linear nature. For the secondary PM2.5 formed by the
nonlinear reactions among PM2.5 precursors, however, our study shows that PSAT appears to have limi-
tations in quantifying the nonlinear contribution of PM2.5 precursors to emission reductions, while RSM
seems to better address the nonlinear relationship among PM2.5 precursors (e.g., PM2.5 disbenefits due to
local NOx emission reductions in major cities with high NOx emissions). The pilot study case results show
that for the ambient PM2.5 in the central cities (Guangzhou, Shenzhen, Foshan, Dongguan, and
Zhongshan) of the PRD, the regional source emissions contribute the most by 42–66%; the dust emissions
are the top contribution sources (29–34% by RSM and 27–31% by PSAT), and the mobile sources are listed
as the secondary contributors accounting for 16–25% by RSM and 19–30% by PSAT among the
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anthropogenic emission sources. The city-scale cooperation on emission reductions and the enhance-
ment of dust and mobile emission control are recommended to effectively reduce the ambient PM2.5

concentration in the PRD.
© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The Pearl River Delta (PRD) region of China has made great achieve-
ments in alleviating the PM2.5 pollution in recent years, with the annual
mean PM2.5 concentration over the PRD decreasing by 51% between
2013 and 2020 (Fig. S1). However, in the years from 2015 to 2019, the
overall decreasing tendency is slow with an annual decline less than 7%
in the PRD. Influenced by COVID-19 (GDEEP, 2021), PM2.5 in the PRD de-
creases by 25% in 2020, with the concentration sharply dropping to
21 μg m−3. Based on the PM2.5 concentration (e.g., 21 μg m−3 averaged
over the PRD) in 2020, the China's 14th Five-Year Plan (2021–2025)
(China, 2021) further proposes a challengeable PM2.5 reduction rate
target of 10% by the end of 2025 compared to 2020. Therefore,
identifying the emission sources with the largest contributions to
ambient PM2.5, and then formulating a sound PM2.5 pollution control
strategy is still listed as one of the priority tasks in the PRD.

The PM2.5 source contributions are mainly analyzed based on two
kinds of modeling approaches, the monitoring-based receptor models
and the modeling-based 3-dimensional air quality models (3-D
AQMs) (Wang et al., 2016; Xie et al., 2016). The receptormodels, includ-
ing chemical mass balance (CMB) (Watson et al., 1984), positive matrix
factorization (PMF) (Paatero and Tapper, 1994), and principal compo-
nent analysis (PCA) (Belis et al., 2013), can assess the source contribu-
tions by matching common characteristics between the source and
receptor using statistical analysis approaches (Thunis et al., 2019). Re-
ceptor models have been extensively used for source contribution anal-
ysis because of their simple operation (Bi et al., 2011; Wang et al.,
2009); nonetheless, they can hardly apportion the contributions of var-
ious emission sources to secondary pollutants and can also be effectively
applied only in the proximity of a few specific monitoring sites (Li et al.,
2018). Accordingly, the 3-D AQMswith the ability to identify the source
contributions to secondary pollutants and assess the air quality at vari-
ous spatial and temporal scales (Chen et al., 2018; Zhang et al., 2017),
have become increasingly popular for PM2.5 source contribution
analysis (Zhu et al., 2018). There are mainly three types of source
contribution analysis approaches based on the 3-D AQMs, including
source sensitivity analysis method, tagged tracer technique, and re-
sponse surface modeling technique (Pan et al., 2020; Thunis et al.,
2019). Source sensitivity analysis method can quantify the sensitivities
of pollutant concentrations to changes in model input parameters
(e.g., emissions), in which the brute forcemethod (BFM) is the simplest
approach that can directly acquire the sensitivity coefficients by
perturbing the input parameters individually (Huang et al., 2018;
Yamaji et al., 2012). A more advanced decoupled direct method
(DDM) is also proposed to provide information about the sensitivities
by solving sensitivity equations decoupled from the model equations
(Dunker, 1984; Ivey et al., 2015); a higher-order DDM (HDDM) is fur-
ther developed to obtain the sensitivities under the nonlinearity
through calculating thehigher-order derivatives offirst-order equations
(Hakami et al., 2003, 2004). The tagged tracer technique, which can ap-
portion the source contributions by tracking multiple reactive tracer
species in a single model run (Dunker et al., 2002), is available for allo-
cating the contributions of various source groups (i.e., different source
regions and categories) to target pollutant concentrations. The Particu-
late Source Apportionment Technology (PSAT) within the Comprehen-
sive Air Quality Model with Extensions (CAMx) (Chen et al., 2019; Kim
et al., 2017; Li et al., 2015; Lu et al., 2019; Wang et al., 2017) and the In-
tegrated Source Apportionment Model (ISAM) within the Community
Multi-scale Air Quality model (CMAQ) (Byun and Schere, 2006; Chang
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et al., 2019; Chen et al., 2017; Foley et al., 2010; Napelenok et al.,
2014) are the twomost commonly used tagged tracer techniques now-
adays. The Response SurfaceModel (RSM)with the ability to predict the
response of pollutant concentrations under different emission control
scenarios in real time (Jin et al., 2020; Xing et al., 2011, 2018, 2019,
2020a,b; Zhao et al., 2015), has also been applied for source contribution
analysis (Fang et al., 2020; Pan et al., 2020). RSM is a reduced-form
meta-model that is constructed by fitting multiple AQM simulations
using statistical algorithms. Compared with DDM, which is not suitable
for quantifying sensitivities under large emission perturbations in the
nonlinear system (Itahashi et al., 2015; Koo et al., 2009; Zhang et al.,
2005), RSM has been proven to providemore accurate response predic-
tions to large emission cuts and well capture nonlinear characteristics
(Foley et al., 2014). Although the aforementioned techniques based on
the 3-D AQMs have been previously employed for source contribution
analysis, the underlying mechanisms of the individual approaches are
essentially different (Clappier et al., 2017; Thunis et al., 2019). Identify-
ing the consistency and inconsistency between different source contri-
bution analysis methods can not only provide insights into the
strengths and limitations of each method, but also favor illustrating
the capability of each method in air quality management applications.
Several studies have been conducted to evaluate the similarities and
discrepancies among different modeling approaches for PM2.5 source
contribution analysis (Burr and Zhang, 2011b; Chatani et al., 2020;
Foley et al., 2014; Koo et al., 2009), but there is barely a comparative
analysis based on the RSM and other methods (e.g., PSAT).

Therefore, this study aims to comprehensively evaluate the PM2.5

source contributions over the PRD region of China using RSM and
PSAT, analyze the corresponding consistency and inconsistency be-
tween the twomethods, and explore the possible causes for the discrep-
ancies between. Based on the source contribution results derived from
RSM and PSAT, the emission control policy for effectively reducing the
ambient PM2.5 levels in the PRD is also recommended.

2. Methodology

The emission source contributions to PM2.5 over the PRD region
are comprehensively analyzed (Fig. 1). Firstly, the modeling systems
of Weather Research and Forecasting-CMAQ (WRF-CMAQ) and
WRF-CAMx are run respectively based on the same input of meteo-
rology and emissions. Secondly, the CMAQ is used to simulate the
PM2.5 concentrations over the PRD in 2017 under the designed con-
trol matrices, which consist of various control scenarios parameter-
ized by different emission control variables (i.e., pollutants,
regions, and sectors). Then, the RSM with differential method (DM)
(Pan et al., 2020) is established based on the CMAQ simulations.
Thirdly, the multiple tracer species corresponding to the emission
control variables are selected and then added to CAMx's built-in
PSAT to track the source regions and sectors of PM2.5. Finally, the
individual emission sector contribution and the contributions of
multiple pollutants, regions, and sectors to PM2.5 in receptors are
comprehensively evaluated by RSM and PSAT.

2.1. Model configurations

The nested modeling domain setting is shown in Fig. 2, and the hor-
izontal resolutions for domain 01 (d01), domain 02 (d02), and domain
03 (d03) are 27 km, 9 km, and 3 km, respectively. The d03 domain,
which covers the entire PRD region, is divided into Guangzhou (GZ),



Fig. 1. The process for analyzing the source contributions to PM2.5 over the PRD region using RSM and PSAT.
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Shenzhen (SZ), Foshan (FS), Dongguan (DG), Zhongshan (ZS), and
other regions (OTH). The assessments of source contribution compari-
son are conducted in the d03 domain.
Fig. 2. Simulation domain and national-controlled air-monitoring sites in the PRD region (R
performance of CMAQ and CAMx). (For interpretation of the references to color in this figure l
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The WRF version 3.9.1 is used for the meteorology field simulation
and the CMAQ version 5.2 and CAMx version 7.0 are applied to simulate
the PM2.5 concentration. The simulation period is January 2017 because
ed triangles: monitor sites; Red pentacles: monitor sites selected to evaluate the model
egend, the reader is referred to the web version of this article.)
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of the relatively high ambient PM2.5 concentration in the PRD in the
whole year of 2017 (HKEPD, 2018). The model configurations for WRF
are shown in Table S1 and those for CMAQ and CAMx (Table S2) are
set similarly tominimize differences. For example, the Carbon Bondver-
sion 6 (CB6) is chosen for gas-phase chemistry in CMAQ and CAMx, and
the aerosol chemistry is represented by the AERO6 and the coarse-fine
scheme version 2 (CF2) in CMAQ and CAMx, respectively. The initial
and boundary conditions stem from the CMAQ simulations and are pre-
pared for CAMx using the Cmaq2camx processor; the spin-up time for
CMAQ and CAMx models is 5 days.

For the outer andmiddle domains, the 2017 anthropogenic emission
inventories provided by Tsinghua University are implemented (Zheng
et al., 2018). For the innermost domain, the 2017-based PRD regional
emission inventory is applied (Fang et al., 2021). The biogenic emissions
are prepared from the Model of Emissions of Gases and Aerosols from
Nature (MEGAN) version 2.1 (Guenther et al., 2012).

2.2. Response surface modeling technology

RSM is ameta-model built upon CMAQ simulationswith the capabil-
ity of predicting the real-time response of pollutant concentrations to
emission source perturbations. In this study, the new polynomial
functions-based extended RSM coupled with the sectoral linear fitting
technique developed by Pan et al. (2020), is utilized to effectively quan-
tify the nonlinear response of air pollutant concentrations to precursor
emission changes from multiple source regions and sectors. The devel-
opment of the new RSM is detailed in Pan et al. (2020).

The specific experiment design for constructing and validating the
RSM in our study is summarized in Table S3, and the corresponding de-
tailed control matrices are shown in Fig. S2. In general, there are three
steps to construct the RSM. First, the relationship between the PM2.5

response in receptor regions to total precursor (i.e., NOx, SO2, VOC,
and NH3) emission changes from multiple source regions is fitted by a
series of polynomial functions (Xing et al., 2017, 2018; Zhao et al.,
2015). For this, a total of 141 emission control scenarios simulated by
CMAQ are required, including one base scenario, 120 scenarios for es-
tablishing the PM2.5 response in each receptor region to changes in
total precursor emissions from each source region (i.e., 20 scenarios
for each receptor region), and 20 scenarios for creating the PM2.5

response in each receptor region to simultaneous changes in total
precursor emissions from all source regions. Second, the linear
relationship between total precursor emissions from all sectors and
precursor emissions from individual sectors in each source region is
established by 169 emission control scenarios (i.e., 28 scenarios for
each source region in addition to one base scenario) (Cohan et al.,
2005; Pan et al., 2020). The total emissions of each precursor from
each source region are classified into those from 6 sectors, including in-
dustrial process, mobile, stationary combustion, agriculture, dust, and
other sources (including solvent use, fuel oil storage, waste treatment,
biomass burning, and catering). Then, the relation of the PM2.5

response in each receptor region to multiregional and multisectoral
precursor emission changes can be established based on the first two
steps. Third, the relationship between the PM2.5 response to primary
PM2.5 emission changes from multiple regions and sectors is fitted by
37 emission control scenarios using the linear function (i.e., 6 scenarios
for each receptor region in addition to one base scenario) (Long et al.,
2016). The primary PM2.5 emission sources from each source region
are also categorized into 6 sectors as mentioned before. In addition,
the extra 30 emission control scenarios randomly generated by
Hamersley quasi-random Sequence Sampling (HSS) between 0 and
1.5 (base scenario = 1) are used for out-of-sample (OOS) validation
to assess the performance of the established RSM (Wang et al., 2011;
Xing et al., 2011, 2017, 2018; Zhao et al., 2015, 2017).

Based on the constructed RSM, various emission source contribu-
tions to PM2.5 can be evaluated. For estimations of individual source
contributions, the employed RSM mechanism is identical to the
4

traditional BFM in air quality models. For assessments of multiple
source contributions, the innovative DM within the RSM is applied to
calculate the contributions by dividing the emission changes into a
range of tiny sections and summing up the PM2.5 response
corresponding to each tiny change. By the division into tiny intervals,
RSM with DM can ensure the PM2.5 response to changes in its
precursor emissions is linear in each interval, which can not only
catch the negative contribution but also ensure that the accumulative
responses are consistent with the total contribution stemming from
the CMAQ integrated scenario. More details about the development of
DM are described in Pan et al. (2020).

2.3. Particulate Source Apportionment Technology

PSAT is an extension tool of CAMx that can track the source regions
and source categories of primary and secondary PM2.5 species in every
grid cell using the reactive tracer technique (Wu et al., 2013). For the
primary PM2.5 species tracked, only a single tracer family is required,
but for the secondary PM2.5 species, several tracer families are needed
to track the relationship between precursors and the resulting PM2.5

compounds. The PSAT splits the PM2.5 concentration into a sum of
contributions, each related to a specific emission source (Thunis et al.,
2019). Especially for the secondary compounds, the decomposition is
conducted by attributing the concentration of each part of the
compounds (e.g., NO3, SO4, and NH4) to its directly related precursor
(e.g., NO2, SO2, and NH3) (Thunis et al., 2018). Although this
decomposition is arbitrary because it depends on the chemical
pathway selection and the relative weights for splitting the secondary
compounds, it can ensure that the sum of contributions equals the
modeled PM2.5 concentration (Kranenburg et al., 2013). More details
about PSAT can be found in the CAMx manual (http://www.camx.
com/). In this study, the anthropogenic emission inventory of the d03
domain applied in PSAT is mainly divided into 6 sectors following the
treatment of RSM.

3. Results and discussion

3.1. Model performance

The performance ofWRF is verified based on the hourlymeteorolog-
ical observations from the central monitor site (Shundesugang site in
FS) of the d03 domain. The validation results of temperature, wind
speed, and relative humidity in January 2017 are summarized in
Table S4. Overall, the simulation results of WRF are acceptable for fur-
ther application in the CMAQ and CAMxmodels. In detail, the simulated
temperature and relative humidity perform well with Correlation coef-
ficients (R) above 0.88, Indices of Agreement (IOAs) above 0.93, and
Normalized Mean Biases (NMBs) within ±4%. The wind speed is
overestimated byWRF (NMB, 98.18%), which is also found in our previ-
ous studies (Fang et al., 2021; Huang et al., 2020; Pan et al., 2020) and
other researches (Huang et al., 2018; Liu et al., 2020). This overestima-
tion of wind speed has always existed from the early to current versions
of the WRF and is mainly due to the exclusion of urban canopy from
WRF (Jiménez and Dudhia, 2012; Santos-Alamillos et al., 2015). Though
the wind speed is overpredicted, the model still reasonably simulates
the wind evolutionary characteristics. For instance, the Root Mean
Squared Error (RMSE) of wind speed is close to the observed value,
with R (0.75) and IOA (0.60) acceptable (Huang et al., 2018).

Comparing the CMAQ-simulated and CAMx-simulated PM2.5

concentrations in January with the observations at 6 national
controlled air quality monitoring sites selected in 6 target regions
(including Luhu site in GZ, Longgang site in SZ, Rongguijiedaoban site
in FS, Dongchengshijing site in DG, Zimaling site in ZS, and Qianshan
site in OTH), the performance of CMAQ and CAMx is evaluated. Accord-
ing to the hourly time series comparisons of the observed data and sim-
ulated results shown in Fig. S3a, both CMAQ and CAMx can reasonably

http://www.camx.com/
http://www.camx.com/
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simulate the temporal variation andmagnitude of PM2.5, with R ranging
from 0.68 to 0.72 for CMAQ, from 0.66 to 0.69 for CAMx, and NMB rang-
ing from −8.20% to 4.51% for CMAQ, from −5.68% to 3.87% for CAMx,
respectively. TheseNMBswellmeet the criteria of NMB<±30% recom-
mended by Emery et al. (2017). Moreover, there is a good agreement
between the PM2.5 concentrations predicted by the CMAQ and CAMx,
with R values being larger than 0.87 (Fig. S3b). Additionally, Fig. S4 pre-
sents the comparison of the monthly mean PM2.5 concentrations
simulated by CMAQ and CAMx over all grid cells of the PRD under the
base case and scenario with 100% control of all key sector emissions,
and also the delta scenario between the base and control scenario. Sim-
ilar to that in the base case simulation (R equals to 0.99), the twomodels
agree well on the control scenario related to the source apportionment
(R equals to 0.94 for control scenario and 0.99 for delta scenario). The
small differences between the simulation results of the two models,
which are inevitably caused by the different chemistry schemes, dry
and wet deposition modules, and PM size representations in the host
models, ensure that the differences in subsequent source contribution
analysis results are primarily attributed to discrepancies in source con-
tribution analysis approaches rather than discrepancies in underlying
models (Burr and Zhang, 2011b; Fang et al., 2021). Overall, both the
WRF-CMAQandWRF-CAMxmodeling systems can reasonably simulate
the meteorological fields and capture the PM2.5 concentration well.

Referring to the statistical indices used for OOS validation in Pan
et al. (2020), the average Mean Square Error (aMSE), average RMSE
(aRMSE), average Relative RootMean Squared Error (aRRMSE), average
andmaximumMeanNormalized Error (aMNEandmaxMNE), and aver-
age R (aR) are selected to quantitatively assess the reliability of RSM by
comparing the RSM-predicted and corresponding CMAQ-simulated
PM2.5 concentrations for the 30 OOS control scenarios. The comparison
results summarized in Table S5 show that the PM2.5 concentrations in
January simulated by CMAQ can be well reproduced by RSM with
aMSE of 0.01–0.08 μg m−3, aRMSE of 0.07–0.25 μg m−3, aRRMSE of
0.23–0.89%, aMNE of 0.06–0.44%, and aR of almost 1. Even in the case
with maximal MNE from the OOS case 11–20, RSM can also predict
the quite similar spatial distribution of PM2.5 concentration as that of
CMAQ (Fig. S5), with their delta (RSM minus CMAQ) in the range
−0.92 to 3.67 μgm−3 over the entire domain. Taken together, the over-
all performance of RSM established in this study is comparable to those
in previous publications (Pan et al., 2020; Xing et al., 2018).

3.2. Comparison of source contributions between RSM and PSAT

3.2.1. Analysis of contribution of individual emission sector to PM2.5

The contributions of individual emission sector to PM2.5

concentrations are analyzed by the RSM and PSAT over the PRD region
in January, and the corresponding BFM results based on the CMAQ sim-
ulations are chosen as standards to evaluate the performance of RSM
and PSAT as in previous studies (Itahashi et al., 2015; Koo et al., 2009).
As shown in Figs. 3 and S6, the contribution to PM2.5 estimated by the
BFM, RSM, and PSAT for each emission sector are fairly similar in
terms of the spatial distributions, although the relative magnitudes pre-
dicted by these three methods are different to a certain extent.

For industrial process emissions, BFM, RSM, and PSAT results are al-
most consistent in space, with the largest contributions occurring over
the Foshan (Fig. 3a). However, PSAT tends to give slightly higher contri-
butions to the grids in Foshanwhile the RSMnearly reproduces the BFM
results (Fig. S6a). For example, the maximum contribution to the grids
in Foshan estimated by the BFM and RSM is 71.04 μg m−3 and
70.03 μg m−3 respectively, while that estimated by the PSAT is
79.18 μg m−3. The higher estimation by PSAT is due to two factors.
First, the industrial process sources in Foshan emit a relatively high
level of NOx (Table S7); therefore, the elimination of industrial process
emissions reduces the NOx concentrations, which results in the
increased availability of oxidants for the oxidation of SO2 in the
atmosphere (Burr and Zhang, 2011a; Fang et al., 2020, 2021). Second,
5

reducing NOx concentrations slightly decreases the production of
nitric acid, which in turn lowers the acidity of the aqueous phase
under winter conditions and leaves more SO2 to be dissolved and
oxidized in the aqueous phase (Koo et al., 2009). These indirect effects
of increased sulfate concentrations somewhat offset the overall PM2.5

decrease caused by the industrial process NOx emission reductions.
However, because PSAT neglects these indirect effects and is designed
to link each secondary PM2.5 compound only to its direct primary
precursor (e.g., the sulfate is only linked to SO2), the source
contribution from NOx is significantly overestimated by PSAT in winter.

For mobile emissions, the contributions and the most affected re-
gions estimated by BFM and RSM are quite consistent spatially, while
both the magnitudes and range of affected areas produced by PSAT
are larger than BFM (Figs. 3b and S6b). In particular, in the urban
areas of Guangzhou where the total possession of vehicles is large, the
largest difference between BFM and PSAT is approximately up to
8.38 μg m−3, while there is only a slight difference of 0.1 μg m−3 be-
tween BFM and RSM. These differences between PSAT and BFM are
also primarily caused by the indirect contributions from an increase in
sulfate concentrations caused by the NOx emission reductions, as the
NOx emissions are dominated bymobile sources in the PRD, particularly
in Guangzhou (Tables S6 and S7) (Fang et al., 2020, 2021; Pan et al.,
2020).

A similar phenomenon is observed in the assessments for stationary
combustion emission contributions among the BFM, RSM, and PSAT.
Good agreement is found between the RSM and BFM for contributions
to PM2.5 concentrations from stationary combustion emissions, while
the PSAT still gives slightly higher contributions than BFM over part of
the domain (Figs. 3c and S6c). This is alsomainly attributed to the afore-
mentioned indirect effects of NOx emission reductions on sulfate
because of the relatively high NOx emissions from stationary
combustion in the PRD (Table S6).

For agriculture emissions, the PM2.5 contributions predicted by PSAT
are lower than BFM (Fig. 3d), particularly in the regions where agricul-
tural activities are high (e.g., Jiangmen), the maximum difference be-
tween PSAT (2.44 μg m−3) and BFM (7.18 μg m−3) is 4.74 μg m−3

(66%) (Fig. S6d). Yet the overall deviation of RSM results from those of
BFM is small spatially, and their differences arewithin±1 μgm−3 across
the entire domain (Fig. S6d). Reductions in NH3 emissions from
agriculture can limit the formation of ammonium sulfate and
ammonium nitrate, resulting in a significant decrease in NO3

− and
SO4

2− in January (Fu et al., 2017). The effects of reduced NH3 emissions
on nitrate and sulfate in winter are taken into account by RSM but ig-
nored by PSAT, causing the underestimation of PSAT and the good
agreement of RSM compared with the BFM.

Since PM2.5 concentrations are linearly related to primary PM2.5

emissions, the dominant component of dust sources (Table S6), the
three approaches give quite similar results for dust emissions (Figs. 3e
and S6e). The relatively good agreements in primary PM2.5

contributions among the three methods further illustrate that
differences in source contribution results are mostly originating from
the source contribution analysis methods rather than the host models.
For the emission sources other than those discussed above (including
solvent use, fuel oil storage, waste treatment, biomass burning, and
catering), relatively large discrepancies appear in spatial distributions
(Fig. 3f) and magnitudes (Fig. S6f) between BFM and PSAT. It may also
be attributed to the complex interactions of various emission species
contained, though they agree that the largest contributions occur in
the central cities of the PRD (e.g., Guangzhou, Shenzhen, Foshan,
Dongguan). The RSM results are fairly consistent with BFM both in
space and magnitudes (Figs. 3f and S6f).

Additionally, in China, the attainment of air quality standards in re-
gions and the efficiency of formulated control strategies are mainly
measured by the air quality of national-controlled air-monitoring local
sites. Therefore, the PM2.5 contribution results obtained from the BFM,
RSM, and PSAT at all national-controlled air-monitoring sites of the
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Fig. 4. Comparison of the contributions to monthly mean PM2.5 concentrations in GZ and SZ from different source regions and pollutants in January (RSM results are generated by a 100%
reduction in all emissions, and the colored bar denotes the contribution only from the pollutant's own emission change; Brownish triangle: total contribution of all pollutant emissions
from each source region; GZ: Guangzhou, SZ: Shenzhen, FS: Foshan, DG: Dongguan, ZS: Zhongshan, OTH: all the other areas in the d03 domain). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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PRD in January are further compared through scatter plots (Fig. S7).
Similar conclusions to the spatial distribution comparisons are also
drawn from the scatter plots. For example, as revealed by the regression
slopes between the results of PSAT versus BFM and RSM versus BFM,
PSAT attributes greater importance (slopes > 1) to industrial process,
mobile, and other sources emissions than BFM, whereas RSM nearly
replicates the BFM results (slopes are almost equal to 1). For dust emis-
sions, the PSAT and RSM both agree reasonably well with the BFM
(slopes equal to 1), but the agreement betweenPSAT and BFM is slightly
less perfect than that of RSM. This slight deviation in primary PM2.5

contributions between PSAT and BFM indicates that different host
models do inevitably bring some differences in source contribution
analysis results, but the effect of these differences is not significant in
this study (Burr and Zhang, 2011b).Moreover, the correlations between
RSM and BFM (R> 0.94) are generally better than those between PSAT
and BFM (R> 0.89) for all emission sectors. Although the disagreement
in magnitudes of PSAT and RSM results is relatively large (except sta-
tionary combustion and dust), there is still a good correlation between
them, with R values being larger than 0.93 (except agriculture).
Fig. 3. Spatial distribution of PM2.5 source contributions calculated by BFM, RSM, and PSAT res
(d) agriculture, (e) dust, and (f) other sources in January (unit: μg m−3; RSM and BFM results
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3.2.2. Analysis of contributions of multiple pollutants, regions, and sectors
to PM2.5

To evaluate the consistency and complementarity inmultiple source
contributions between the RSM and PSAT, the emission contributions of
pollutants from different source regions to monthly mean PM2.5

concentrations are first systematically estimated in 5 central cities of
the PRD (i.e., GZ, SZ, FS, DG, and ZS) (Figs. 4 and S8). The results for
each city are calculated on the basis of all local national-controlled air-
monitoring sites in the city, and the RSM results are generated by DM
under the 100% control scenario for all emissions. As demonstrated in
Figs. 4 and S8, both RSM and PSAT agree that the primary PM2.5

emissions are the most important contributors to PM2.5

concentrations in 5 receptor cities, particularly those from local
emissions, significantly contributing 27–49% (by RSM) and 27–48%
(by PSAT). Good agreement between RSM and PSAT is also found in
the total local (i.e., contributions from receptor region itself) and re-
gional contributions (i.e., contributions from other source regions ex-
cept receptor region in the d03 domain) of all precursors (i.e., the sum
of SO2, VOC, NH3, and NOx). Taking GZ and SZ as examples (Fig. 4), the
pectively for emissions from (a) industrial process, (b) mobile, (c) stationary combustion,
are generated by a 100% reduction in individual emission sectors).
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total contributions of all precursors from regional transport are larger
than those from local emissions.

While RSM and PSAT give the most consistent estimations for the
local and regional primary PM2.5 emissions due to the linear processes
of primary PM2.5 emissions, their predictions for precursors differ to
varying degrees. For SO2 emissions, the RSM's and PSAT's calculations
are quite similar as a result of the relatively small nonlinear
interactions between the SO2 emissions and sulfate formation in
winter (Itahashi et al., 2017). The slightly higher contribution
estimations of SO2 by PSAT than RSM are possibly due to the indirect ef-
fects accounted for in RSM but not in PSAT, in which the elimination of
SO2 emissions can make more oxidants accessible for the oxidation of
other precursors (e.g., NOx) and then slightly facilitate the formation
of other secondary PM2.5 compounds (e.g., nitrate) (Burr and Zhang,
2011b; Koo et al., 2009). RSM and PSAT agree that the contributions of
VOC emissions to PM2.5 are almost negligible in all receptors except
for the local contributions in GZ, in which RSM's value is larger than
PSAT's value. This is probably because PSAT overlooks the indirect influ-
ences of the VOC emission reductions on a slight decrease in NO3

− or
SO4

2−, which means that the reductions in VOC emissions can cause a
decline in oxidants usable to oxidize NOx or SO2 due to the reduced O3

formation in GZ in winter (Fang et al., 2020). For NH3 emissions, the
contribution predictions of RSMare larger than those of PSAT in 5 recep-
tor cities. One possibility for this result is that these central cities of the
PRD are under NH3-limited regime during the pollution period (Yin
et al., 2018), and the NH3 abatement can effectively lower the sulfate
and nitrate concentrations, which are considered by RSM through the
interaction terms in the polynomial functions but ignored by PSAT,
making the relatively reasonable estimates for RSM. As for NOx

emissions, the most obvious difference in contributions between RSM
Fig. 5. Comparison of the percentage contributions to monthly mean PM2.5 concentrations in
reduction in all emissions; GZ: Guangzhou, SZ: Shenzhen).
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and PSAT is that the RSM can predict the negative contributions of
NOx emissions to PM2.5, because NOx reductions result in more
oxidants generated to oxidize other precursors (e.g., SO2) (Fang et al.,
2020; Thunis et al., 2021), causing the slight increase in secondary
PM2.5 (e.g., sulfate) concentrations consequently; whereas PSAT always
predicts positive contributions. For instance, the local NOx contributions
calculated by RSM in GZ and DG (Fig. S8) where the NOx emissions are
high (Table S7) are −0.85 μg m−3 and −0.36 μg m−3, while the
contributions are 0.55 μg m−3 and 0.52 μg m−3 by PSAT, respectively.
RSM is capable of capturing these nonlinear responses of secondary
PM2.5 to reductions in NOx emissions based on the polynomial
functions; however, PSAT fails to identify them because it neglects
these indirect effects and assumes no negative secondary PM2.5

production for each source category (Burr and Zhang, 2011b).
Furthermore, the contributions of various source sectors to monthly

mean PM2.5 concentrations in 5 receptor cities are evaluated. It can be
discerned from Figs. 5 and S9 that RSM and PSAT basically agree on
the percentage contributions of 6 source sectors as well as their relative
rankings in 5 receptor cities. In particular, the top two contributors iden-
tified by RSM and PSAT in each receptor are not only consistent in terms
of source sectors, but also their total contributions explain more than
50% of the total PM2.5 concentrations. For example, due to the large
total possession of vehicles in GZ and SZ, the dust (road dust, construc-
tion dust, stockyard dust, etc.) and mobile sources are identified as the
top two contributors by both RSM and PSAT in GZ and SZ, with a contri-
bution of 29–34% and 22–25% (by RSM) and 30–31% and 26–30% (by
PSAT) separately. In other 3 cities (i.e., FS, DG, and ZS; Fig. S9), the
dust and mobile emissions are also the top and secondary contributors,
accounting for 29–31% and 16–23% (by RSM) and 27–30% and 19–29%
(by PSAT) respectively. These source contribution results are similar to
GZ and SZ from different source sectors in January (RSM results are generated by a 100%
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those of other related researches in the PRD (Pan et al., 2020; Yang et al.,
2020; Yin et al., 2017). Nevertheless, compared with the slight differ-
ence (PSAT minus RSM, 1%) in the contribution of mobile sources be-
tween RSM and PSAT in SZ, the difference in GZ is large (9%). It is
because estimations in GZ are based onmonitoring sites that aremainly
located in the traffic volume network while those in SZ are close to the
ocean. Intensive transportation can bring large amounts of NOx

emissions (Table S7), which means that the nonlinear effects of local
NOx emission reductions on PM2.5 are stronger in GZ, leading to the
higher difference between RSM and PSAT in GZ than in SZ.

The contributions of different source sectors from local emissions
and regional transport to monthly mean PM2.5 concentrations are also
assessed in 5 receptor cities (Figs. 6 and S10), for which the estimates
between RSM and PSAT for dust sources are the most similar. RSM
and PSAT are consistent in source attribution results from local emis-
sions (34–58%) and regional transport (42–66%) (Fig. S11), with differ-
ences lower than ±0.5%. For the local contributions of different source
sectors to PM2.5 in receptors, the dust emissions are determined as the
most important sources by both RSM and PSAT, contributing 15–24%
(by RSM) and 14–20% (by PSAT). Regardless of rankings, the other
two major contributors assessed by both RSM and PSAT are mobile
and other sources in GZ, SZ, DG, and ZS, but industrial process and
other sources in FS. The largest deviation in local contributions of differ-
ent source sectors between RSM and PSAT, about 8% (PSAT minus RSM,
Fig. S11), is observed in the mobile sources in GZ, with a corresponding
difference in the regional contribution of only 1%. For the regional con-
tributions of various source sectors to PM2.5 in receptors, some
important results can be found. First, the most important regional
Fig. 6. Comparison of the contributions to monthly mean PM2.5 concentrations in GZ and SZ fr
reduction in all emissions; Blue triangle: total contribution of all sector emissions from each s
OTH: all the other areas in the d03 domain). (For interpretation of the references to color in th
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source estimated by RSM and PSAT for most receptors is consistent
with each other. For example, in GZ, themost important regional source
evaluated by RSM and PSAT is the industrial process (RSM, 12%; PSAT,
12%; Fig. S11). Second, the relative contribution and ranking of each
source sector from each source region (except receptor region) esti-
mated by RSM and PSAT at receptors are similar. Taking the contribu-
tions of each source sector from OTH to GZ as examples, both RSM
and PSAT predict that industrial process emissions are most important
sources, followed by dust emissions, mobile emissions, stationary com-
bustion emissions, other sources emissions, and agriculture emissions.
Third, the contribution from OTH is the largest for each receptor city.
In addition to the OTH contribution, FS and ZS (Fig. S10), which are lo-
cated downwind of the PRD under the prevailing northeasterly wind in
January (Fig. S12), are significantly affected by the transportation of pol-
luted air masses from upwind cities such as GZ, SZ, and DG. Among the
contributions of various source sectors from these upwind cities, RSM
and PSAT agree that the mobile sources from GZ contribute the most
to FS and ZS. It may be attributed primarily to the considerable amounts
of NOx emitted from themobile sources in GZ (Table S7) and the strong
prevailing northeasterly wind that the NOx from GZ can experience re-
gional transportation and participate in chemical reactions in FS and ZS,
aggravating the PM2.5 pollution.

4. Conclusions

In this study, the source contributions to PM2.5 over the PRD region
of China are comparatively analyzed using two advanced source contri-
bution modeling approaches: RSM and PSAT.
om different source regions and sectors in January (RSM results are generated by a 100%
ource region; GZ: Guangzhou, SZ: Shenzhen, FS: Foshan, DG: Dongguan, ZS: Zhongshan,
is figure legend, the reader is referred to the web version of this article.)
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The comparative analyses show that both RSM and PSAT are capable
of reasonably evaluating the contribution of primary PM2.5 emission
sources to ambient PM2.5 because of its linear nature. However, they
exhibit different performances in assessing the source contributions to
secondary PM2.5 formed by the nonlinear reactions among PM2.5

precursors. PSAT seems to be limited by its capability in quantifying
the nonlinear contribution of PM2.5 precursors to emission changes,
for example the PM2.5 disbenefits due to local NOx emission
reductions in GZ and DG, because it assumes that each secondary
PM2.5 compound is attributed only to its direct primary precursor
(e.g., the sulfate is only apportioned to SO2, the nitrate to NOx, and the
ammonium to NH3), but ignores the indirect effects caused by
nonlinear interactions among precursors (e.g., the increase in sulfate
concentrations resulting from a reduction in NOx emissions). RSM is
able to well identify the nonlinear relationship among PM2.5

precursors and catch their nonlinear contributions to PM2.5 as
demonstrated in the PRD case.

The source contribution results illustrate that for the ambient PM2.5 in
the central cities (GZ, SZ, FS, DG, and ZS) of the PRD, the regional source
emissions contribute the most by 42–66%; the dust emissions are the
top contribution sources (29–34% by RSM and 27–31% by PSAT), and the
mobile sources are ranked as the secondary contributors accounting for
16–25% by RSM and 19–30% by PSAT among the anthropogenic emission
sources. Accordingly, to effectively lower the ambient PM2.5 concentration
in the PRD, the city-scale cooperation on emission reductions and the
strengthening of dust and mobile source control are suggested.

The establishment of RSM requires hundreds of simulations, but
once built, it can achieve the real-time source contribution analysis
under different emission control scenarios. It is because RSM can rapidly
repeat the source apportionment results generated from brute force
scenarios that can directly be explained by emission reductions. PSAT
only needs one simulation for source apportionment analysis of one sce-
nario, but its results only represent the specific emission scenario that is
simulated and cannot be interpreted in terms of different emission re-
ductions. Therefore, PSATmay be inefficient if applied to different emis-
sion scenarios, because the computational time required for PSAT will
increase significantly when there are a huge number of emission reduc-
tion scenarios to be simulated. Maintaining a high predictive perfor-
mance while reducing the required computational cost has always
been our goal for RSMdevelopment.With the continuous improvement
of RSM, the computational resource consumption required for RSMcon-
struction has been greatly reduced, and even only two simulations can
be used to successfully create an efficient RSM through the machine
learning technology (Xing et al., 2020b). The combination of source con-
tribution analysis with the latest low computational burden RSM has
been listed in our next step development plan.
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